\(\int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx\) [100]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 44 \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=-\frac {A (a+b x)^3}{4 a x^4}+\frac {(A b-4 a B) (a+b x)^3}{12 a^2 x^3} \]

[Out]

-1/4*A*(b*x+a)^3/a/x^4+1/12*(A*b-4*B*a)*(b*x+a)^3/a^2/x^3

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {79, 37} \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=\frac {(a+b x)^3 (A b-4 a B)}{12 a^2 x^3}-\frac {A (a+b x)^3}{4 a x^4} \]

[In]

Int[((a + b*x)^2*(A + B*x))/x^5,x]

[Out]

-1/4*(A*(a + b*x)^3)/(a*x^4) + ((A*b - 4*a*B)*(a + b*x)^3)/(12*a^2*x^3)

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rubi steps \begin{align*} \text {integral}& = -\frac {A (a+b x)^3}{4 a x^4}+\frac {(-A b+4 a B) \int \frac {(a+b x)^2}{x^4} \, dx}{4 a} \\ & = -\frac {A (a+b x)^3}{4 a x^4}+\frac {(A b-4 a B) (a+b x)^3}{12 a^2 x^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.07 \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=-\frac {6 b^2 x^2 (A+2 B x)+4 a b x (2 A+3 B x)+a^2 (3 A+4 B x)}{12 x^4} \]

[In]

Integrate[((a + b*x)^2*(A + B*x))/x^5,x]

[Out]

-1/12*(6*b^2*x^2*(A + 2*B*x) + 4*a*b*x*(2*A + 3*B*x) + a^2*(3*A + 4*B*x))/x^4

Maple [A] (verified)

Time = 0.38 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.09

method result size
default \(-\frac {a \left (2 A b +B a \right )}{3 x^{3}}-\frac {b^{2} B}{x}-\frac {b \left (A b +2 B a \right )}{2 x^{2}}-\frac {a^{2} A}{4 x^{4}}\) \(48\)
norman \(\frac {-b^{2} B \,x^{3}+\left (-\frac {1}{2} b^{2} A -a b B \right ) x^{2}+\left (-\frac {2}{3} a b A -\frac {1}{3} a^{2} B \right ) x -\frac {a^{2} A}{4}}{x^{4}}\) \(51\)
risch \(\frac {-b^{2} B \,x^{3}+\left (-\frac {1}{2} b^{2} A -a b B \right ) x^{2}+\left (-\frac {2}{3} a b A -\frac {1}{3} a^{2} B \right ) x -\frac {a^{2} A}{4}}{x^{4}}\) \(51\)
gosper \(-\frac {12 b^{2} B \,x^{3}+6 A \,b^{2} x^{2}+12 B a b \,x^{2}+8 a A b x +4 a^{2} B x +3 a^{2} A}{12 x^{4}}\) \(52\)
parallelrisch \(-\frac {12 b^{2} B \,x^{3}+6 A \,b^{2} x^{2}+12 B a b \,x^{2}+8 a A b x +4 a^{2} B x +3 a^{2} A}{12 x^{4}}\) \(52\)

[In]

int((b*x+a)^2*(B*x+A)/x^5,x,method=_RETURNVERBOSE)

[Out]

-1/3*a*(2*A*b+B*a)/x^3-b^2*B/x-1/2*b*(A*b+2*B*a)/x^2-1/4*a^2*A/x^4

Fricas [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.16 \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=-\frac {12 \, B b^{2} x^{3} + 3 \, A a^{2} + 6 \, {\left (2 \, B a b + A b^{2}\right )} x^{2} + 4 \, {\left (B a^{2} + 2 \, A a b\right )} x}{12 \, x^{4}} \]

[In]

integrate((b*x+a)^2*(B*x+A)/x^5,x, algorithm="fricas")

[Out]

-1/12*(12*B*b^2*x^3 + 3*A*a^2 + 6*(2*B*a*b + A*b^2)*x^2 + 4*(B*a^2 + 2*A*a*b)*x)/x^4

Sympy [A] (verification not implemented)

Time = 0.36 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.27 \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=\frac {- 3 A a^{2} - 12 B b^{2} x^{3} + x^{2} \left (- 6 A b^{2} - 12 B a b\right ) + x \left (- 8 A a b - 4 B a^{2}\right )}{12 x^{4}} \]

[In]

integrate((b*x+a)**2*(B*x+A)/x**5,x)

[Out]

(-3*A*a**2 - 12*B*b**2*x**3 + x**2*(-6*A*b**2 - 12*B*a*b) + x*(-8*A*a*b - 4*B*a**2))/(12*x**4)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.16 \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=-\frac {12 \, B b^{2} x^{3} + 3 \, A a^{2} + 6 \, {\left (2 \, B a b + A b^{2}\right )} x^{2} + 4 \, {\left (B a^{2} + 2 \, A a b\right )} x}{12 \, x^{4}} \]

[In]

integrate((b*x+a)^2*(B*x+A)/x^5,x, algorithm="maxima")

[Out]

-1/12*(12*B*b^2*x^3 + 3*A*a^2 + 6*(2*B*a*b + A*b^2)*x^2 + 4*(B*a^2 + 2*A*a*b)*x)/x^4

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.16 \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=-\frac {12 \, B b^{2} x^{3} + 12 \, B a b x^{2} + 6 \, A b^{2} x^{2} + 4 \, B a^{2} x + 8 \, A a b x + 3 \, A a^{2}}{12 \, x^{4}} \]

[In]

integrate((b*x+a)^2*(B*x+A)/x^5,x, algorithm="giac")

[Out]

-1/12*(12*B*b^2*x^3 + 12*B*a*b*x^2 + 6*A*b^2*x^2 + 4*B*a^2*x + 8*A*a*b*x + 3*A*a^2)/x^4

Mupad [B] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.11 \[ \int \frac {(a+b x)^2 (A+B x)}{x^5} \, dx=-\frac {x^2\,\left (\frac {A\,b^2}{2}+B\,a\,b\right )+\frac {A\,a^2}{4}+x\,\left (\frac {B\,a^2}{3}+\frac {2\,A\,b\,a}{3}\right )+B\,b^2\,x^3}{x^4} \]

[In]

int(((A + B*x)*(a + b*x)^2)/x^5,x)

[Out]

-(x^2*((A*b^2)/2 + B*a*b) + (A*a^2)/4 + x*((B*a^2)/3 + (2*A*a*b)/3) + B*b^2*x^3)/x^4